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The micromechanical stresses associated with hexagonal (6H) s-SiC platelets within 
a fine-grained alumina matrix were calculated using an Eshelby approach. The stresses within and 
around the interface of SiC platelets were determined. Both stresses were found to be strongly 
dependent on the morphology and the volume fraction of the SiC particles. The morphology 
effect, however, tended to be limited at aspect ratios/> 1 0. Owing to anisotropy in the thermal and 
elastic properties of s-SiC, the residual stresses just outside the inclusion also depended on the 
position along the SiC/AI203 interfaces. The maximum tensile stress was found at the edges of 
SiC platelets. There were two principal tangential tensile stresses which differed greatly at the 
edges of disc-shaped inclusions. The results of the stress analysis were consistent with observed 
differences in microcrack morphology and the resultant reduction of the Young's modulus of the 
composites. 

1. In t roduct ion 
Studies of whisker-reinforced ceramics have shown 
substantial improvements in fracture toughness and 
resistance to slow crack growth via the incorporation 
of strong, small-diameter whiskers into ceramic 
matrices [1, 2]. However, the improvements are often 
overshadowed by the hazardous nature [1] of the fine 
whiskers and the constraint produced by the rein- 
forcement that inhibits densification [3, 4]. Recently, 
an alternative to whisker reinforcement, i.e. platetet 
reinforcement, has been explored. Ceramic, single- 
crystal platelets, e.g. SiC [5, 6], A1203 [7], and ZrB2 
[8] have been developed and employed to make 
ceramic- and metal-matrix composites. The toughen- 
ing effect of platelets in ceramic-matrix composites 
was found to be quite encouraging, e.g. a K~c value of 
7.1 MPam 1/2 was reported for an A1103 composite 
containing 30 vol % SiC platelets [9]. The use of large 
SiC platelets in an alumina matrix, however, in certain 
conditions can degrade the mechanical properties. For 
example, the Young's modulus and the fracture tough- 
ness of the composites were greatly reduced by the 
occurrence of spontaneous microcracking. The cause 
of these microcracks was considered to be a result of 
the residual stresses from thermal expansion mis- 
match between SiC and A1203. 

The residual stresses in SiC whiskers/A1/O3 com- 
posites have been studied [10-14]. However, in these 
analyses, the silicon carbide particles or whiskers were 
cubic (3C), which is not the case in the current system, 
in which single-crystal hexagonal (6H) SiC platelets 
were used. The single-crystal elastic properties of the 
hexagonal (6H) s-SiC polytype and the cubic (3C) 
13 polytype are similar in magnitude [15, 16-1, but the 
thermal expansion anisotropies of these materials are 
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different [17]. In this paper, the micromechanical 
stresses associated with hexagonal s-SiC platelets 
within a fine-grained polycrystalline alumina matrix 
have been calculated. The effects of the aspect ratio 
and the volume fraction of a SiC platelet were invest- 
igated. In addition, microstructural observations of 
a SiC platelet/A1203 composite containing spon- 
taneous microcracking are presented. The different 
microcrack morphologies and their relationship to the 
residual stresses are discussed. 

2. M i c r o m e c h a n i c a l  stress calculat ions 
The analysis used to calculate the micromechanical 
stresses is based on studies by Eshelby [18] and Mori 
and Tanaka [193. Eshelby in 1957 analysed the stress 
state of an ellipsoidal inclusion in an infinite matrix. 
The stress fields inside the inclusion and around its 
interface were obtained. Mori and Tanaka later modi- 
fied Eshelby's model to account for the problem of 
finite concentration of inclusions. In their studies, 
however, the strain due to thermal expansion mis- 
match between matrix and inclusions was not in- 
cluded. In this paper, the thermal strain will be 
incorporated and both analytical approaches are 
described briefly below. 

Consider the model, shown in Fig. 1, in which the 
SiC ellipsoidal inclusions are aligned along X1, )(2, 
and X3 axes. The axes are chosen such that X1 and X2 
are parallel to the crystallographic (2 1 1 0) and X3 
parallel to (0 0 0 1 ). The ellipsoidal s-SiC (6H) single- 
crystal inclusions are represented by two geometrical 
parameters, L and d, where L is specified as parallel to 
X3 and d is parallel to X~ and X2. The inclusions and 
the matrix are assumed perfectly bonded, and with the 
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Figure 1 Single-crystal e11ipsoidal SiC (6H) particle in an isotropic 
alumina matrix. 

elastic stiffness constants, Cbk I and o Cijkl , respectively. 
To give the platelet morphology, the inclusion geo- 
metry is considered to be axisymmetric around X3, 
giving the "disc-like" morphology. Based on the 
Eshelby method, the stress within a single-crystal par- 
ticle in an infinite matrix, crb in), when subjected to an 
eigenstrain such as a thermal strain, s~a, can be ex- 
pressed as 

�9 pt O 'b  in) --: ~ij  + (~q 

= Cokl(F, kl ~- F, kl 

o 0 ~' - s* , )  ( 1 )  = Cijkl(E, kl + Skl 

where s~ is the strain due to the applied stress, ~u. 
These two tensors are related by 

6ij = CuklSklO 0 (2) 

The thermal strain, due to the strong temperature 
dependence of ~ [17], is calculated as 

f s~, = l a S t ( T )  - r176 (3) 
1 

where T 2 is the temperature below which the complete 
stress relaxation by "creep"-related processes can be 
neglected (a temperature of 1300 ~ was assumed), T~ 
is room temperature, a~z are the thermal expansion 
coefficients of a-SiC, and & is the average thermal 
expansion coefficient of the matrix. The e~ and c~  t are 
the disturbances of the strain and stress due to the 
presence of the second-phase particle, and the e*t is the 
equivalent eigenstrain of the inclusion, introduced 
into the region of the matrix, to account for the effect 
of its elastic inhomogeneity. 

Eshelby's solution readily provides the relation 
pt , 

Ski = SklmnSmn (4) 

where Ski,,, is the transformation tensor, which is 

dependent on the Poisson's ratio of the matrix and the 
aspect ratio of the inclusions. 

At a finite concentration of inclusions, the stress in 
the inclusion can be calculated by the method of Mori 
and Tanaka [19] as 

~( in )  ij = i~ij nt - i~ij ~_ (ypt 

1 0 pt __ S~I) 
~- Cijkl(akl + ~kl -~- Ski 

0 0 pt = Cuk~(e~, + ~k~ + e~ - e'l) (5) 

where 6ij and gk~ are the differences between finite 
concentrations and single inclusion for the average 
stress and strain in the matrix, respectively. Because 
volume average of the mean stresses in the matrix and 
the inclusions must be in balance with c3~j, we have 

pt Oq = - Vo u (6) 

where V is the volume fraction of inclusions. The 
average perturbed strain in the matrix is 

~ij - V(Sukt - lijki) ak* (7) 

where lqk~ is the fourth-rank identity tensor. With 
Equations 7 and 4, s*z may be readily solved by substi- 
tuting into Equation 5 and the stresses inside the 
inclusion can be rewritten as 

y{in) Cgkl[F.~l "~ ( 1  V)(Sk lmn Ilktm,)S*,] (8) iJ ~-  - -  - -  

The micromechanical stresses within the matrix just 
or(out) outside the inclusion, v~j , have been suggested by 

Mura and Cheng [20] as 
y(out) _ ( i n )  0 0 * 

ij = Oij + C i j k l [ -  CpqmnSmnMkp•qnl + Sk*/] 

(9) 

where 

Mkp = _~oI~k p nknp ] (10) 
2(1- ~ -UoiJ 

and ni is the unit outward normal of the inclusion, 
5kp the Kronecker delta, and go and Uo the shear 
modulus and Poisson's ratio of the matrix, respect- 
ively. 

Applying Equations 8-10, the residual stresses of an 
ellipsoidal inclusion with an oblate shape or other 
shapes such as whiskers and spheres, can be obtained 
as long as the matrix is assumed to be isotropic in both 
thermal expansion and elastic properties. However, 

* in actual applications of the the eigenstrains, slj, 
theory may be very difficult to obtain from Equation 
8. A matrix method has been suggested by Li and 
Bradt [10, 21, 22] to simplify the above equations and 
is used in this paper. 

3. Residual stresses within the s-SiC 
inclusion 

The elastic stiffness data of a-SiC [15] and A1203 used 
for the calculation are listed in Table I. (The stiffness 
data for AlzO3 are calculated from the single-crystal 
compliance data [23] assuming that the fine-grained 
polycrystalline A1203 matrix is isotropic.) Here, we 
use the room-temperature values for simplification, 
because the elastic constants of SiC and A1203 are 
only slightly temperature dependent. Instead of using 
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T A B L E  I Elastic stiffness data of c~-SiC and AI203 0 

Material Stiffness (GPa) 

Cll C12 C13 C33 C44 

7-SIC 479 98 56 521 148 
AI20 3 468 142 142 163 163 

T A B L E I I Thermal expansion coefficients of ~-SiC and AlzO 3 as 
a function of temperature 

Material Equations for cqj or ~o 

e-SiC 

A1203 

oql = 3.27 x 10 6 + 3.25 x 10 -9 T -  1.36 x 10 -1; T 2 
(~ ~) 

0{33 = 3.18 x 10 -6 q- 2.48 x 10 -9 T -  8.51 x 10 -13 T 2 
(oc-x) 

5~ ~ = 5.84x 10 6 + 7.88x 10 9 T -  4.69• 10 - ' 2  T 2 
(~ 

the room-temperature values, thermal expansion coef- 
ficients as a function of temperature are used. Table II 
lists the equations of these coefficients for 0~-SiC [17] 
and the alumina matrix (the function for alumina is 
obtained by a least-square fitting of raw thermal ex- 
pansion data [24]). 

The residual stresses within an oblate ellipsoidal 
~-SiC particle, o(li~ ) and o(~ ), are plotted in Figs 2 and 
3 respectively, as they vary with the aspect ratio and 
the volume fraction. As the elastic and thermal expan- 
sion properties are equal along )(2 and X~ directions, 
the residual stress along the X2 direction, (o~)), is 
found to be equal to that along X1 axis, (o]~)). Indeed, 
as the basal plane is isotropic with respect to thermal 
expansion and elastic constants, the stresses are inde- 
pendent of orientation in the Xz-X2 plane. From 
these figures, the residual stresses within an oblate 
ellipsoidal 0t-SiC particle are all compressive, which is 
quite obvious, because the thermal expansion of the 
matrix is much larger than the inclusions. In addition, 
the stresses are highly dependent on the aspect ratio 

(in) or the shape of the inclusion. For  example, o 11 of 
a composite (V = 0) decreases from - 1.56 GPa  to 
- 2.4I GPa  for a change of aspect ratio from 1 to 10, 

i.e. from a sphere to a disc-like particle. The stress 
(in) decreases with the increasing aspect ratio. For o33, 

the trend is reversed, i.e. the stress increases with 
the increasing aspect ratio. For  example, crag ) of a 
composite ( V ~  0) increases from - 1 . 6 4 G P a  to 
- 0.32 GPa  for an aspect ratio change from 1 to 10. 

Both o~i~) and o ~ )  reach a plateau value at aspect 
ratio ~ 10 (from this value the stresses only change 
a few per cent as the aspect ratio approaches infinity). 

The effect of volume fraction on residual stresses 
inside ~-SiC particles, however, shows the same de- 

-(~") and ~(i.) pendence for both Oll  u33 , i.e. both stresses 
increase with increasing SiC volume fraction. For  

(in) example, cr 11 of an SiC inclusion with an aspect ratio 
of 10 increases from - 2.41 GPa  to - 1.67 GPa  as 

~_.a _(in) the volume fraction changes from 0 to 0.3, anu 0 3 3  in- 
creases from - 0.32 GPa  to - 0.23 GPa  for the same 
volume fraction change. 
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( i n )  ( i n )  Figure 2 Residual stresses, ox~ and cY22, within an ~-SiC ellips- 
oidal particle as a function of aspect ratio and volume fraction 
(numbers shown). 
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( i n )  - �9 Figure3 Residual stress, 033, wxthm an or-SiC ellipsoidal particle as 
a function of aspect ratio and volume fraction (numbers shown). 

4. Residual stresses w i t h i n  the AI203 
m a t r i x  

The stresses in the matrix just outside the inclusion 
are also of interest and can be readily calculated. 
For convenience, the radial, or,, and tangential, 
Croo and cr~, components of the stresses are deter- 
mined. As mentioned in the previous section, the 
inclusion is isotropic with respect to both thermal 
expansion and elastic constants in the basal plane; 
therefore, the stresses just outside the inclusion are 
also independent of orientation in the X1-X2 plane. 
For  convenience, we only consider the stresses at the 
perimeter of inclusion on the X:X3 plane from point 
A to point B. For  this case, the directions of Or, and 
CYoo are in the X1-X3 plane and %~ is parallel to X2 
(see Fig. 1). For  other planes containing the X3 axis, 
~ will no longer be parallel to X2; however, its 
magnitude remains the same. Once the principal stres- 

(out) ~(~ ~(~ ses, (Yll , u 2 2  , and ,o33 , at a point P in the X1-X3 
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plane are determined, the radial and tangential stres- 
ses are given as 

o,r  = o(t~ 4- o~~ (11) 

(3"00 = (y(o~t)s in  2 0 + 0(3~ t) c o s  2 0 (12) 

_(out) (13)  CY~ = 0 2 2  

where 0 is the angle characterizing the unit normal 
and can be related to angle do (see Fig. 1) through the 
geometrical relationship [25] 

tan do = 82 tan0 (14) 

where g = d/L)  is the aspect ratio of the inclusion. 
Figs 4-6 show the stresses just outside the inclusion, 

Or, O00 and o~ ,  as a function of angle, do, and volume 
fraction of SiC oblate particles with an aspect ratio of 
10, respectively. Contrary to residual stresses inside 
the ~-SiC inclusions, which are hydrostatic, the stres- 
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Figure 4 Radial stress, ~r, around a ~z-SiC ellipsoidal particle 
(aspect ratio = 10) in the alumina matrix for different angle, ~, 
(numbers inside the graph represent the volume fraction). 
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Figure 5 Tangential stress, or00, around a or-SiC ellipsoidal particle 
(aspect ratio = 10) in the alumina matrix for different angle, ~, 
(numbers inside the graph represent the volume fraction). 
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Figure 6 Tangential stress, %~, which is parallel to X2 axis, around 
a e-SiC ellipsoidal particle (aspect ratio = 10) in the alumina matrix 
for different angle (~) (numbers inside the graph represent the 
volume fraction). 

ses just outside the inclusions are not hydrostatic but 
depend on location along the interface (angle do). 
However, the dependences are very limited, i.e. all the 
stresses reach some plateau values at angle do >/ 10 ~ 
As for the effect of SiC volume fraction, it is clear that 
Orr, which is compressive, shows a lower dependence 
on volume fraction than ~00 and o ~ ,  which are tensile 
in nature. Both cy00 and o ~  increase with increasing 
SiC volume fraction. This trend, the residual tensile 
stresses in the matrix increasing with increasing SiC 
volume fractions, has been proven experimentally by 
Majumdar and Kupperman [12] and Abuhasan et aL 
[13] using neutron and X-ray diffraction in SiC 
whisker/Al:O3 composites. It is also interesting to 
note that the two types of tangential tensile stresses, 
c~00 and ~ ,  are not equal at low angles (d o ~< 10~ 
i.e. o00 is much greater than ~ .  For  example, cy00 is 
1.97 GPa  and cy~ is only 0.82 GPa  of a composite 
( V =  0.3) containing SiC inclusions with an aspect 
ratio of 10. At higher angles (do >~ 10~ the two become 
equal (see Figs 5 and 6). Similar results that the ex- 
treme stresses exist at either point A (do = 90 ~ or 
B (do = 0 ~ have been reported by Li and Bradt [10] in 
SiC(3C)/alumina composites. 

5. Microstructural observation in SiC 
platelet/AI203 composites 

From the previous section, it is clear that very high 
tensile stresses exist just outside the inclusion parti- 
cularly at location B (Fig. 1) and they increase with 
increasing SiC volume fraction. Consequently, one 
would expect that radial microcracks could form at 
this location in SiC/AI203 composites. Indeed, radial 
microcracks have been observed by Chou and Green 
[9] in an SiC platelet/A!203 composite. Similar radial 
microcracks have been found by Davidge and Green 
[26] in two-phase ceramic/glass materials, in which 
the ceramic inclusion also has a smaller coefficient of 
thermal expansion than the glass matrix. 
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For composites containing plate-like inclusions, 
one would expect cracks to initiate at the edges of the 
platelets, where the tensile stresses are maximum 
(Fig. 5). For a platelet composite, it needs also to be 
realized that these radial cracks could exist with 
various morphologies as compared to the radial 
microcracks found in composites containing spherical 
particles. For example, the fracture surface of the 
radial cracks could be perpendicular or parallel to the 
platelet faces and these will be referred to as Type 
I and II microcracks, respectively, whereas the radial 
cracks would be perpendicular to the surface of 
spheres in the composites containing such particles. 
For the latter case, such morphologies were observed 
by Davidge and Green for YhO2 spheres in glass [26]. 
Both Type I and II radial microcracks were observed 
in some preliminary studies of a SiC (V = 0.1)/AlzO3 
composite using large SiC platelets ( ~ 48 gm, aspect 
ratio ~ 8). A typical example is shown in Fig. 7. Large 
radial microcracks with lengths in the range of 100 gm 
are clearly seen in the optimal micrograph (Type I). In 
addition, smaller scale radial microcracks with crack 
planes approximately parallel to the platelet faces are 
also present at the circumference of SiC platelets (Type 
II, shown by the arrows). It should be noted that the 
microcracks observed here may not be exactly perpen- 
dicular or parallel to platelet faces but rather deviate 
by some angles, because the stress state at the edge 
of the platelet contains biaxial tensile components, 
although the magnitudes of stresses, coo and c~ ,  are 
not equal to low qb angles. 

The occurrence of Type II microcracks is expected 
because the tangential tensile stress, coo, is found to 
be the highest stress. For the case of a SiC volume 
fraction of 0.1 and an aspect ratio of 8, o00 at the 
platelet edges is 1.73 GPa which is much larger than 
%~ of 0.36 GPa. Even though o~  is less than c~00 these 
stresses must be responsible for the Type I micro- 
cracks. Because the size of SiC platelets is reduced, 
however, the formation of Type I microcracks be- 

Figure 7 Spontaneous microcracking in SiC-platelet/Al203 com- 
posites (V = 0.1) using large size ( ~ 4 8  pro) platelets. Note there are 
two types of radial microcracks: Type I ( ~ 100 gin) with fracture 
surfaces perpendicular to the platelet faces and Type II (see arrows) 
parallel to the faces. 

Figure 8 Optical micrograph shows that only Type II microcracks 
are present in a SiC platelet (V = 0.2)/A1203 composite using small 
size ( ~ 24 gin) platelets. 

comes limited. Fig. 8 shows the microstructure of 
a SiC (V=  0.2)/A1203 composite using a smaller 
platelets ( ~ 24 gin) and aspect ratio ( --~ 4). It is clear 
that only Type II microcracks are present. The stresses 
at the platelet edges calculated for this case are 1.70 
and 0.76 GPa for c0e and c~ ,  respectively. The tan- 
gential stress, c~ ,  is about twice as large as that in the 
composites with larger platelets and yet no Type I 
microcracks are found. The formation of Type I 
cracks is, therefore, believed to be associated with the 
size of the SiC platelets used. A critical size effect, such 
that microcracking does not occur for inclusions 
below a given size, is an established phenomenon in 
brittle particulate composites [27]. 

For platelet composites, reduction of platelet size 
first removes the Type I microcracks ( ~  < ~00). The 
observed difference in crack length for Type I and II 
cracks in Fig. 7 is not clear. The shorter Type II cracks 
are expected because the highest stress is located at the 
interface of the inclusion and the matrix such that 
cracks tend to stay in the vicinity of the platelet edge 
rather than propagating away from it. In addition, the 
stresses are believed to drop greatly away from the 
interface. For example, Selsing showed that the radial 
and tangential stresses decreased to the third power 
with respect to the distance away from inclusions [28]. 
It is also expected that the shorter Type II micro- 
cracks are more favoured because this type of circum- 
ferential crack can relieve a larger fraction of the 
residual stresses by propagating around the platelet 
compared to Type I cracks. In order to determine the 
factors influencing the length of the Type I cracks, one 
would need to determine how ry~ changes with dis- 
tance from the platelet. 

The existence of spontaneous microcracking was 
also confirmed by the measurement of Young's 
modulus. Fig. 9 shows the Young's moduli of the 
composites as a function of SiC platelet volume frac- 
tion for two different directions: one parallel and the 
other perpendicular to the hot-pressing axis. It has 
been shown by Chou and Green I-9] that there existed 
preferred platelet orientation in hot-pressed SiC plate- 
let/Al203 composites with the faces of platelets lying 
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Figure 9 Young's modulus of the SiC platelet (~24 pm)/A120 3 
composites as a function of the SiC platelet volume fraction. 

perpendicular to the hot-pressing axis. It is therefore 
appropriate to measure the Young's modulus along 
these two directions. From Fig. 9, it is clear that the 
moduli of composites show a slight increase or are 
unchanged with increasing SiC volume fractions up to 
V = 0.15. At higher volume fractions, the moduli drop 
abruptly for both directions, and this clearly indicates 
microcracks spontaneously forming as the material is 
cooled after fabrication. 

It is interesting to note that the Young's modulus is 
greater in a direction parallel to the hot-pressing axis 
than the perpendicular direction at lower volume 
fractions (V ~< 0.15). The trend, however, reverses at 
higher volume fractions, i.e. the Young's modulus is 
greater in the perpendicular direction than the parallel 
direction. The phenomenon at lower volume fractions 
is not surprising because the Young's modulus of the 
SiC platelets is 510 and 455 GPa for parallel and 
perpendicular directions, respectively [29]. The de- 
crease of the Young's modulus at high volume frac- 
tions for both directions is strictly due to the existence 
of spontaneous microcracking. Such a decrease should 
be a result of incomplete densification as the porosities 
of the composites are all less than 2%. Using various 
theories that consider the effect of porosity on the 
elastic constants, one can estimate that 2% porosity is 
unlikely to reduce the modulus by more than ~ 5%, 
unless it is in the form of microcracks. Similar beha- 
viour has been observed in many ceramics, for example 
MgTi205 [30] and ZrO2/A1203 [31] ceramics. 

The trend that Young's modulus at higher SiC 
volume fractions is greater in the perpendicular direc- 
tion than the parallel direction is most likely due to 
the morphologies of these microcracks. As mentioned 
in the previous section, Type II microcracks are likely 
to lie with crack planes parallel to the platelet faces 
due to the highest tensile stresses, or00. Therefore, the 
Young's modulus of the composite would be smaller 
when measured perpendicular to the crack planes (or 
parallel to the hot-pressing axis as shown in Fig. 9). 
The effect of crack orientation on the reduction ot 
Young's modulus has been analysed by Hasselman 
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TABLE III  Young's modulus of the composites along the hot- 
pressing direction for two different size of platelets 

Platelet size (gm) Young's modulus (GPa) for volume 
fractions of SiC: 

0.0 0.1 0.2 0.3 

24 407 405 275 225 
12 403 411 415 419 

and Singh [32]. They predict that cracks with prefer- 
red orientation, for example, if the crack planes are 
parallel to each other, should result in lower Young's 
modulus when measured perpendicular to the crack 
planes compared to the parallel direction. Our results 
are consistent with their conclusions though the differ- 
ence between the modulus for the two directions is not 
as substantial as suggested by their analysis for per- 
fectly aligned cracks (note that the test method for 
Young's modulus, the ultrasonic velocity method, 
often yields precise measurements (error <~ 1%), in- 
dicating that the measured difference along these two 
directions is not due to experimental error). The dis- 
crepancy is most likely due to the SiC platelets not 
being perfectly aligned parallel to each other and thus 
neither will the cracks. Nevertheless, the anisotropy in 
the Young's modulus of the microcracked composites 
clearly demonstrates the importance of the residual 
stress analysis in providing insight into the micro- 
cracking process. Finally, it has been shown that fur- 
ther reduction in platelet size to 12 gm can remove 
both types of microcracks [-9]. Table III lists the 
Young's modulus of the composites with two different 
sizes of SiC platelets. It is clear that no reduction of 
Young's modulus is observed for composites using 
small-sized platelets. This is a critical step in pro- 
ducing brittle platelet composites with maximum 
strength and fracture toughness. 

6. C o n c l u s i o n s  
The residual stresses associated with m-SiC platelets 
in a polycrystalline alumina matrix were determined. 
The results indicate that both the stresses inside and 
just outside the inclusion are dependent on the mor- 
phology (aspect ratio) and the volume fraction of SiC 
particles. However, the changes in stresses are limited 
for aspect ratios >~ 10. Owing to the anisotropy in the 
elastic and thermal expansion properties of m-SiC, two 
different tangential tensile stresses, or00 and cy~, were 
evaluated. It is found that G00 is much greater than 
cy~ at low angles (qb ~< 10~ and they become equal at 
other angles (d~ >~ 10~ The tensile stresses are found 
responsible for the formation of spontaneous micro- 
cracking in a SiC platelet/Al203 composite. Micro- 
cracks with two different morphologies are found 
from optical microscopy and the measurement of the 
Young's modulus. The difference in morphology is 
consistent with the stress calculation. The analysis 
clearly demonstrates its importance in providing 
insight into the microcracking behaviour of ceramic 
platelet composites. 
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